

基于氘气受激拉曼散射的 1.6 μm 波段大能量 脉冲激光研究

蔡向龙^{1,2},李仲慧³,刘栋²,王鹏远²,陈莹²,刘金波²,石晶¹,王婷婷¹,蔡红星^{1*},郭敬为^{2**} ¹长春理工大学理学院,吉林 长春 130022;

²中国科学院大连化学物理研究所中国科学院化学激光重点实验室, 辽宁 大连 116023;

³无锡中科光电技术有限公司, 江苏 无锡 214115

摘要 采用 1064 nm 脉冲激光作为泵浦光,通过高压氘气的受激拉曼散射变频实现 1.56 μm 拉曼激光输出,并建 立了计算受激拉曼散射与聚焦特征之间关系的模型,实现了对实验工作的指导。采用两次聚焦的设计,通过氘气 气压以及聚焦参数等变量的优化,实现最高 82.4%的光子转换率。为了提高 1.56 μm 拉曼激光的单脉冲能量,采 用降低气压、提高泵浦光脉冲能量等方式,实现了最高 245 mJ 的脉冲能量,并通过倍频实现了 780 nm 激光输出, 从而获得一种产生 780 nm 波长高峰值功率脉冲激光的方法。

关键词 激光物理;脉冲激光;受激拉曼散射;氘气;转换率

中图分类号 TN 248 **文献标志码** A

DOI: 10.3788/CJL202249.1101001

1 引 言

1.6 µm 波段是激光的重要大气传输窗口,适合 远距离传输方面的应用,因此常被用作测量气溶胶 激光雷达的光源^[1]。1.6 µm 激光处于人眼的安全 波段^[2],因此它用于激光测距要比常规的 1064 nm 激光测距仪更为安全。激光的脉冲能量(或平均功 率)是决定这类仪器有效测量距离的重要参数,因此 产生具有大脉冲能量的 1.6 um 波段激光的需求迫 切。产生大脉冲能量 1.6 µm 波段激光的方法比较 多,例如 976 nm 二极管泵浦或者 1470/1532 nm 同 带光源泵浦低浓度掺杂的 Er:YAG 可以实现 1617 nm 和 1645 nm 激光输出^[3-4]。976 nm 二极管 泵浦的量子亏损比较大,热管理难度较大;同带泵浦 Er: YAG 具有非常高的效率和光束质量,但是 1470/1532 nm 光源的成本远远高于常规 0.8~ 1 μm 波段的二极管激光,而且功率范围比较窄。 1.6 μm 波段激光可以采用多种类型的频率变换 方法获得,例如利用比较成熟的 Nd: YAG 激光泵 浦 KTP、PPLN 等非线性晶体的光学参量过 程[5-6],以及通过氘气或者甲烷气体在自由空间的 一阶拉曼转换^[7-8]、氘气在空芯光纤内的一阶拉曼 转换^[9-11]、固体拉曼介质^[12]或者光纤^[13]的高阶拉 曼转换都可以实现 1.6 µm 波段拉曼激光输出。 通过固体拉曼介质和普通光纤拉曼转换的方法具 有较低的阈值和较高的转换率,但是拉曼频移比 较小,频移量在1000 cm⁻¹量级甚至更低,通常需 要高阶斯托克斯拉曼转换才能获得大范围拉曼频 移,实现1.6 um 波段激光输出;同时受到损伤阈 值等条件限制,通过固体拉曼介质和普通光纤拉 曼转换的方法更适用于高重复频率(低脉冲能量) 或者连续波激光的变频输出。气体拉曼介质的增 益系数比较小,因此阈值更高,且气体的损伤阈值 也远高于固体和光纤,因此通过气体介质转换的 方法更适用于大脉冲能量(高峰值功率)的拉曼激 光的产生。甲烷和氘气都是常用的增益系数比较 大的拉曼活性气体介质,两者具有比较接近的拉 曼频移(分别为 2917 cm⁻¹ 和 2987 cm⁻¹),若以

收稿日期: 2021-08-27; 修回日期: 2021-09-15; 录用日期: 2021-11-11

基金项目:国家自然科学基金(22073101,62005282)

通信作者: *ciomsz@126.com; **jingweiguo@dicp.ac.cn

研究论文

1064 nm 激光为泵 浦光,可以分别产生波长为 1.54 μm 和 1.56 μm 的拉曼激光。虽然氘气的价 格远高于甲烷,但是氘气比甲烷更为稳定,不会像 甲烷那样在强激光下分解产生炭黑;氘气分子量 远小于甲烷,从而具有更好的对流冷却效果,因此 可以获得更高重复频率的拉曼激光;另外,氘气的 前、后向拉曼激光增益系数差别很大,不存在前、 后向受激拉曼输出能量竞争的问题。因此,对于 大脉冲能量(10 Hz 量级重复频率)的拉曼激光输 出,氘气是比甲烷更合适的选择。

本文主要研究在双次聚焦条件下 1064 nm 激 光泵浦氘气的受激拉曼效应,发现氘气气压、聚焦 条件、泵浦激光脉冲能量(峰值功率)对于拉曼转 换率都有影响,并获得最高 82.4%的 S1(一阶斯 托克斯)拉曼光子转换率。高阶拉曼效应的产生 以及激光诱导击穿的作用,造成大脉冲能量(高峰 值功率)激光泵浦时转换率下降,因此采用较低氘 气气压和增加激光束腰尺寸等方式来提高拉曼激 光的脉冲能量,并且获得最高能量为 245 mJ 的 1.6 µm 波段激光。所提方法具有非常好的能量 和重复频率定标放大性,适用于高平均功率拉曼 激光的产生。

2 实验装置

实验装置如图1所示,泵浦激光光源采用镭宝光 电生产的 Nimma-900 Nd: YAG 固体激光器,其输出 激光波长为1064 nm,激光器出口光斑直径为8 mm, 最大输出能量为900 mJ,脉宽(半峰全宽)约为10 ns, 重复频率为 10 Hz。M1、M2、M3 为 1064 nm 高反镜; dichroic mirror 是 1064 nm 高反和 1560 nm 增透的二 向色镜,用于后向拉曼激光能量的测量。L1、L2、L3 为 JGS1 石英凸透镜:L1 的焦距为 150 cm;L2 的焦距 为 50 cm,并且镀有 1064 nm 和 1560 nm 双波长增透 膜;L3的焦距为100 cm。L4 为短焦负透镜,用于扩 大光束口径,避免由激光峰值功率密度过高造成的能 量计探头损伤。拉曼池由两个 200 cm 长的拉曼池连 接而成,内部充 0.5~3.5 MPa 高纯度氘气。光束经 L1 在拉曼池中聚焦形成第一个焦点,经过放置在两 个拉曼池连接处的 L2 在拉曼池内形成第二个焦点, 再经过 L3 准直成准平行光。该平行光经过棱镜分光 后可用于测量拉曼激光脉冲能量。L1 距离拉曼池入 口的距离可调,其初始位置为距拉曼池窗口 59 cm, 第一个焦点在第一个拉曼池中心,第二焦点在第二个 拉曼池中心。

图 1 实验装置示意图 Fig. 1 Optical schematic of experimental setup

3 实验结果与讨论

图 2(a)、(b)所示为 S1 拉曼激光光子转换率随 着氘气气压以及泵浦光脉冲能量(峰值功率)的变化 曲线,其中点代表实验数据,竖直方向的线代表该数 据点 30 次平均的误差棒(采用 PTP 方法统计)。氘 气气压的变化范围为 0.5~3.5 MPa。同一气压下 数据点的连线主要是为了方便追踪 S1 转换率随着 泵浦脉冲能量的变化规律。0.5 MPa 氘气对应的 S1 拉曼阈值约为 165 mJ (脉冲的瞬时功率为 16.5 MW);当氘气气压增大到 1.0 MPa 时,S1 拉曼 阈值降低至约 110 mJ (11 MW);当氘气气压增大到 1.5 MPa 时,S1 拉曼阈值降低至约 80 mJ (8 MW)。 氘气气压进一步增加到 2 MPa 甚至更高时,S1 拉曼 阈值略有降低,但是变化不明显,说明氘气 S1 受激拉 曼增益系数在 2 MPa 氘气气压下就达到最大值,此后 随着气压的增加,增益系数几乎不再增大。为了比较 两次聚焦与常规单次聚焦的差别,图 2(c)给出了焦距 f=150 cm 透镜单次聚焦和 3 MPa 氘气气压下两次 聚焦的 S1 拉曼光子转换率随着泵浦激光脉冲能量的 变化曲线。可以看到,单次聚焦时受激拉曼阈值高达 125 mJ,明显高于 3 MPa 氘气气压下两次聚焦的受激 拉曼阈值,充分说明两次聚焦具有非常明显的降低阈 值的作用。此外,单次聚焦的最高 S1 转换率约为 43%,而两次聚焦(3 MPa)条件下的最高转换率约为 54%,明显高于单次聚焦的转换率。

图 2 S1 拉曼激光的光子转换率随氘气气压以及泵浦光脉冲能量(峰值功率)的变化曲线。(a)氘气气压为 0.5~1.5 MPa; (b)氘气气压为 2.0~3.5 MPa;(c)氘气气压为 3 MPa 时两次聚焦与 *f*=1500 mm 透镜单次聚焦条件下的转换率曲线对比 Fig. 2 Photon conversion efficiency of the first Stokes (S1) Raman laser under different deuterium gas pressures and pulse energies (peak power) of pump light. (a) Deuterium gas pressure of 0.5-1.5 MPa; (b) deuterium gas pressure of 2.0-3.5 MPa; (c) comparison of photon conversion efficiency curves between double focus with deuterium gas pressure of 3 MPa and single focus with focal length of 1500 mm

S1转换率的影响因素较多,相对比较复杂,它 既受S1拉曼增益系数的影响,也受高级拉曼竞争的 影响。从图2(a)可以看到:在0.5 MPa 氘气气压条 件下,S1转换率在301 mJ 泵浦光时达到最大值 26.2%;当氘气气压增加到1.0 MPa 时,S1转换率 在256 mJ 时达到最大值33.2%;当氘气气压增加 到1.5 MPa 时,S1转换率在225 mJ 时达到最大值 45.4%。从图2(b)可以看到,当氘气气压增加到 2.0 MPa 时,S1转换率在185 mJ 时达到最大值 62.4%。综上所述,在0.5~2.0 MPa 范围内,随着 气压的增加,达到最大转换率的泵浦脉冲能量降低, 同时最大转换率不断提高。这与S1 拉曼增益系数 随氘气气压的变化规律基本一致。当气压进一步增 大时,最高转换率明显下降,这应该是由高阶斯托克 斯拉曼激光的竞争造成的^[14]。

图 2(a) 所示的在 0.5~1.5 MPa 氘气气压范 围内受激拉曼散射产生的阈值与转换效率上升沿曲 线的斜率特征验证了文献[15]中报道的规律,即稳 态受激拉曼散射条件下气体压强(浓度)越高,增益 系数越大,表现为:气压升高,阈值降低,转换效率曲 线的斜率变大。如图 2(b)所示,当氘气气压在 2.0~3.5 MPa 之间变化时,受激拉曼阈值与转换 效率曲线的斜率相近,符合在气压大于 2 MPa 条件 下氘气受激拉曼增益系数随气压的增加趋于一个定 值的规律。进一步挖掘图 2(b)所示的实验结果,可 以发现不同的气压条件下转换效率曲线上升段的斜 率有微小差别,气压越高,增益越占优势,此现象与 前文的气压在 2 MPa 以上,S1 增益系数基本不变 的结论似乎矛盾^[15]。实际上该现象可以用"拉曼增 益烧孔"的理论解释。"拉曼增益烧孔"是由粒子数 消耗造成的增益系数下降的现象,与"激光烧孔"现 象类似。因此,介质气压越低,"拉曼增益烧孔"现象 越严重。从阈值到 150 mJ 之间的 2 MPa 和 3 MPa 拉曼转换率曲线的变化规律可以解释"拉曼增益烧 孔"效应。在2 MPa 以下, S1 增益系数受气压变化 的影响比较明显,高于 2 MPa 时气体的 S1 增益系 数基本为一个常数,可以参考文献[15]。因此,理论 预测两者的转换率基本一致,但是实验结果是 3 MPa@118 mJ 和 140 mJ 泵浦能量的转换率明显 大于 2 MPa 对应的转换率,其主要原因就是 2 MPa 条件下消耗的粒子数占比更大,表现出更为严重的 "拉曼增益烧孔"现象,因此 S1 增益系数明显减小。 当然,二阶斯托克斯(S2)拉曼激光的竞争也产生了 较大的影响。当泵浦光脉冲能量超过 160 mJ 时, 3 MPa条件下存在更为明显的 S2 竞争,所以 3 MPa的 S1 转换率逐渐小于 2 MPa的 S1 转换率。 总体来说,"拉曼增益烧孔"和S2的竞争是共存的, 但是在达到最高转换率之前,"拉曼增益烧孔"起主 要作用;在达到最高转换率之后,S2的竞争起主要 作用。当泵浦光脉冲能量刚超过阈值时,S1转换率 比较低,拉曼散射过程对于振动基态氘气的消耗可 以忽略不计;当泵浦光脉冲能量远大于阈值时,S1 转换率会增加到比较高的水平,此时拉曼散射过程 对于振动基态氘气的消耗变得不可忽略,而增益系 数正比于振动基态粒子数密度,所以增益系数会随 着转换率的增大而降低。气压越高,相同转换率所 消耗的振动基态粒子数占比越低,S1 增益系数随着 转换率增大的变化越不明显。以 2 MPa 和 3 MPa 单次聚焦为例,计算如下:氘气存在正氘(J=0,2, 4,…)和仲氘(J=1,3,5,…),不同转动量子阶数对 (a)

应的振动拉曼频移分别为 2991.86 cm⁻¹ (J = 0), 2989.70 cm⁻¹ (I = 1),2985.39 cm⁻¹ (I = 2),...; \Re 浦激光和拉曼激光的线宽均略小于1 cm⁻¹,因此具 有不同转动量子数」的氘气存在振动受激拉曼散 射的模式竞争,只有最可几转动能级对应的振动模 式可以产生受激拉曼散射。在室温 298 K 条件下, 转动量子数 J = 2 的仲氘粒子数占比最高,达到 38.5%。激光发散角为1 mrad,采用 f=1500 mm 的透镜单次聚焦时,激光传输至透镜处的光斑直径 为9mm,可以计算出激光的焦深约为6cm,而焦深 区域的体积约为 0.045 cm³。焦深区域是产生受激 拉曼激光最有效的区域,2 MPa 和 3 MPa 条件下该 区域的氘气总粒子数分别为 2.22×10¹⁹ 和 3.33× 10¹⁹,可以计算出在 2 MPa 和 3 MPa 条件下该区域 的 J=2 的仲氘粒子数分别为 0.855×10¹⁹ 和 1.28× 10¹⁹。1064 nm 激光的单光子能量为 1.88×10⁻¹⁹ J, 以140 mJ 泵浦能量,50%转换率(该焦深区域转换

第49卷第11期/2022年6月/中国激光

10%)为例,将有 7.44×10¹⁶ 个粒子发生受激拉曼 散射,并布居在 v=1、J=2 的能态上;在 2 MPa 和 3 MPa 条件下 J=2 (v=0)的能态粒子布居数分别 减小了 0.9%和 0.6%,对应的 S1 增益系数也分别 减小了 0.9%和 0.6%。虽然两者增益系数差别不 够明显,但是拉曼激光转换率与增益系数 g、有效作 用距离(焦深)以及泵浦光功率密度的 e 指数成正 比,所以差别会被明显放大。

如图 3 所示,对获得的 1560 nm 波长激光进行光 谱与脉冲时间宽度表征。图 3(a)所示为 S1 拉曼激光 的输出光谱,采用的光谱仪为 HORIBA FHR1000 双 联体光栅光谱仪,探测器为利用液氮冷却的钢镓砷探 测器。图 3(b)为 S1 拉曼激光的脉冲图,采用 LeCory 生产的型号为 WAVERUNNER 625Zi 的示波器和 ALPHALAS 生产的型号为 UPD-5N-IR2-P 的光电探 测器,受到所使用的探测器响应速度限制,采集的脉 冲波形时间大于实际激光脉冲宽度。

Fig. 3 Spectrum and pulse waveform of S1 Raman laser. (a) Spectrum of S1 laser; (b) pulse waveform of S1 laser

由于聚焦条件对拉曼光的转换率具有较大的影响^[16],完全依靠实验探索不同聚焦条件下的受激拉曼 阈值和转换率的办法费时费力,因此本研究采用简单 模拟计算辅助实验优化的方法提高受激拉曼转换率。

受激拉曼可以看作一个以自发拉曼激光为种子 光的受激拉曼放大过程,而拉曼光的转换率通常是 由总体增益决定的^[17]。通常条件下反斯托克斯光 的转换率比较低(小于 3%),在不考虑高阶拉曼转 换的前提下,拉曼光的转换率会随着总体增益的增 大而提高。因此,在相同的泵浦激光峰值功率条件 下,通过优化聚焦条件的设计,实现尽可能大的总体 增益有利于实现更高的拉曼光转换率。

本文采用文献[18]中定义的总体增益系数 G 进行模拟,并预测探测参考信号(SRS)总体增益系 数与透镜位置之间的关系。G 的表达式为

$$G = \left| g I_{\rm P} \mathrm{d}z \right|, \tag{1}$$

式中:z为光轴坐标;g为 SRS 增益系数; I_{P} 表示泵 浦光的光强。

$$I_{\rm P}(z) = P_{\rm P}/S(z), \qquad (2)$$

式中:P_P表示泵浦光功率;S(z)表示光斑有效面积。S(z)的计算方法为:在焦深附近,采用菲涅耳 公式进行计算,并加入光束质量因子修正;在其他区域,采用傍轴光学理论进行计算。

SRS 是很灵敏的信号,式(2)不能满足要求。 实际计算过程中,为了提高精确度,本研究对频率的 影响进行修正^[19],因此式(1)修正为

$$G(v) = \left| g(v) I_{\mathbf{P}}(v) dz \right|, \qquad (3)$$

$$g(\nu) = \frac{4\pi^2 c^2 \Delta N}{n_{\rm Sl}^2 \hbar^2 \omega_{\rm Sl}^3} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) L(\upsilon), \qquad (4)$$

式中: $g(\nu)$ 为增益系数; $L(\upsilon)$ 为洛伦兹线型; ΔN 为 介质分子基态与振动激发态能级之间的粒子数密度 差值; c 为光速; ħ为修正的普朗克常量; n_{si} 为 S1 在介质中的折射率; ω_{S1} 为 S1 的角频率; $\frac{d\sigma}{dQ}$ 为微分 散射截面。式(3)的计算结果为一个频率分布函数, 取平均值后,即可得到图4所示的曲线,其中实心方 块代表计算数值,泵浦激光峰值功率 Pp 取值为 15 MW。当泵浦激光的峰值功率不同时,计算所得 的总体增益 G 的数值也会不同,但是随聚焦透镜位 置的变化规律是相同的。从图 4 可以看到,随着聚 焦透镜向拉曼池窗口移动,总体增益G不断增大, 但是总体增益变化曲线的斜率不断减小。因此,在 一定范围内将透镜移向拉曼池,有利于提高拉曼激 光的总体增益G,从而有利于提高拉曼转换率。当 然,还需要考虑高阶拉曼对于 S1 转换率的影响,以 及光学元件损伤阈值对于焦点位置的限制等因素, 因此实验中透镜只能在初始位置的基础上向拉曼池

overall gain coefficient G versus translation distance of focusing lens 最多移动 36 cm。

根据模拟计算得出的规律,在图1所示的实验 中将透镜L1移向拉曼池,可以改变焦点1到透镜 L2的距离 l2,从而改变焦点 2 到透镜 L2 的距离 f_{20} 表1给出了不同L1相对位置所对应的 l_{2} 和 f2 对照关系。图 5 所示为 0.5,1.0,2.5,3.0, 3.5 MPa条件下 S1 激光最高光子转换率随着 L1 位置的变化曲线。在 1.5 MPa 和 2.0 MPa 条件下 曲线的变化规律与 1.0 MPa 的相似,为了提高图 5 的清晰度,这两条曲线没有画出。从图5可以看到, 除了 3.5 MPa 条件外, S1 激光的最高光子转换率 随 L1 向拉曼池入口的移动(l1 减小)而呈现出增加 的趋势。3.5 MPa条件下 S1 激光的最高光子转换 率下降的主要原因有两个:1)产生S2的转换已经达 到了难以忽略的水平,与 S1 转换构成竞争,造成了 S1 转换率下降;2)激光诱导击穿(LIB)对于 3.5 MPa转换率的下降也有明显的作用。10 MW 量级峰值功率的激光在聚焦条件下,有可能通过多 光子非共振的方式电离氘气分子,而且电离的概率 随着泵浦激光的峰值功率和氘气气压的增加而增 大。电离产生的电子在激光的电场作用下加速,如 果再次与氘气分子发生碰撞,则可以再次发生电离, 产生二次电子。如果类似的过程多次发生,则会产 生雪崩电离并形成等离子体,该过程也就是 LIB。 LIB 的阈值随着氘气气压的增加明显降低,同时形 成的等离子体的密度也会随着氘气气压的增加而增 大。因此,在忽略 S2 和 S1 竞争与高压气体容易电 离的问题,则根据图5可以得出合适的氘气气压,并 且图 5 所示的结果验证了图 4 理论计算得到的规 律。需要说明的是,图 5 中 3.5 MPa 条件下的结果 不符合图 4 的理论结果,主要原因是 S2 与 S1 的竞 争;3.5 MPa条件下的转换率明显低于 3 MPa 还有 一个重要原因是高气压条件会造成激光诱导气体电

Position No.	Relative position of the L1 (distance l_1 between L1 and Raman entrance)	Distance l_2 between focus 1 and L2 /cm	Distance f_2 between L2 and focus 2 /cm	Diameter of laser beam at L2 /mm
1	Initial position ($l_1 = 59.0 \text{ cm}$)	109.0	92.4	4.9
2	Move 9 cm to the Raman cell entrance $(l_1 = 50.0 \text{ cm})$	100.0	100.0	4.5
3	Move 18 cm to the Raman cell entrance $(l_1 = 41.0 \text{ cm})$	91.0	111.0	4.1
4	Move 27 cm to the Raman cell entrance $(l_1 = 32.0 \text{ cm})$	82.0	128.1	3.7
5	Move 36 cm to the Raman cell entrance $(l_1 = 23.0 \text{ cm})$	73.0	158.7	3.3

表 1 不同 L1 相对位置所对应的 l_2 和 f_2 对照关系 Table 1 Comparison of l_2 and f_2 corresponding to different L1 relative positions

位置的变化曲线

离,气压压力越高,激光诱导电离所带来的损耗越 大,从而造成压力增大,转换率明显下降。

图 6 所示为在 3 MPa 氘气气压,聚焦透镜 L1 向拉曼池入口移动 36 cm 条件下,S1 光子转换率和 脉冲能量随泵浦激光脉冲能量的变化曲线。可以看 到:当泵浦光脉冲能量为160.9 mJ时,S1最高光子 转换率为 82.4%, 对应的 1560 nm 拉曼激光的脉冲 能量为 90.5 mJ; 而 S1 拉曼激光的最大脉冲能量为 92.7 mJ。随着泵浦能量的进一步增大,S1的光子 转换率和脉冲能量迅速下降,主要原因是S2的竞争 以及 LIB 对于泵浦光和产生的拉曼激光的损耗。 从图 2 可以看到,随着拉曼气体气压的降低,增益系 数减小,而达到最高转换率的泵浦光脉冲能量明显 增加,有利于实现更大脉冲能量的拉曼激光输出。 降低气压还有利于提高 LIB 的阈值,降低由 LIB 带 来的损耗。此外,采用长焦距的透镜可以增大激光 束腰尺寸,从而降低激光的峰值功率密度,有利于提 高 LIB 阈值和降低由 LIB 带来的损耗。为了实现 大脉冲能量拉曼激光输出,采用不聚焦长程池受激 拉曼设计,并且将氘气的气压降低至 1.0 MPa,其 S1 激光脉冲能量随着泵浦激光脉冲能量的变化曲 线如图7所示。虽然拉曼激光的能量阈值比较高 (~580 mJ),最高拉曼光子转换率(48.8%)也明显 低于图 6 所示的结果,但是其最大单脉冲能量高达 245 mJ.

本实验对产生的 1560 nm 拉曼激光使用长度 为 2 cm 的温度匹配的 LBO 晶体倍频,实验装置如 图 8 所示,其倍频能量和效率曲线如图 9 所示。受 限于 LBO 晶体以及晶体表面增透膜损伤阈值,并且 拉 曼激光脉冲能量的波动性比较大,1560 nm激光

- 图 6 在 3 MPa 氘气气压,聚焦透镜 L1 向拉曼池入口移动 36 cm(距拉曼池入口 23 cm)条件下,S1 光子转换率和脉冲能量随泵浦激光脉冲能量的变化曲线
- Fig. 6 S1 photon conversion efficiency and pulse energy vs. pulse energy of pump laser in the condition of 3 MPa deuterium gas pressure and the focusing lens L1 moves 36 cm towards the entrance of the Raman cell (23 cm from the entrance of the Raman cell)

图 7 长程池条件下 S1 激光脉冲能量随泵浦激光脉冲能量的变化曲线

Fig. 7 Pulse energy of S1 laser and photon conversion efficiency vs. pulse energy of pump laser in the long path cell configuration

图 8 激光倍频装置示意图 Fig. 8 Experimental setup of second-harmonic

generation (SHG)

脉冲能量局限在 160 mJ 以内,所输出的 780 nm 倍 频激光的最大脉冲能量为 57.3 mJ,此时的最高转 换率为 36.1%。温度匹配的 LBO 的倍频效率通常 比较高,但这里倍频效率低的主要原因在于

第49卷第11期/2022年6月/中国激光

图 9 1560 nm 激光倍频产生 780 nm 激光的效率和脉冲 能量曲线

1560 nm 拉曼激光的光束质量比较差。这是由静态拉曼池中氘气受激拉曼热效应引起的。脉冲能量为 160 mJ (10 Hz)的 1560 nm S1 激光所对应的产热功率大于 510 mW。虽然这些热量对于转换率的影响不明显,但是可能造成激光的光束质量出现比较严重的退化。为了验证这种假设,使用光束质量分析仪(Spiricon M 2-200:CCD 光谱响应范围为 266~1300 nm)测量了 780 nm 倍频激光的光束质量,其光束质量如图 10 所示。可以看到, M_x^2 =5.761, M_y^2 =4.848。泵浦激光的光束质量因子 M^2 =3.2,而在没有明显热效应的条件下,拉曼激光的光束质量应该略好于泵浦激光的光束质量^[20],同时倍频也有利于改善光束质量^[21]。因此光束质量退化的主要原因是静态拉曼池中的热效应。

图 10 780 nm 激光光束质量 Fig. 10 Beam quality of 780 nm laser

4 结 论

采用两次聚焦并且调节焦点位置以及氘气气压 实现了最高 82.4%的 S1 拉曼激光转换率,这也是 目前自由空间 1064 nm 泵浦氘气受激拉曼激光的 最高转换率;发现并且解释了拉曼增益烧孔现象,适 当地增大拉曼介质的气压有利于抑制拉曼增益烧孔 现象,从而有利于在大脉冲能量(高峰值功率)泵浦 条件下维持较高的受激拉曼转换率。为了进一步提 高拉曼激光的脉冲能量,本研究采用降低拉曼介质 气压并且增大泵浦激光束腰尺寸的方式,最终获得 的最大单脉冲能量为 245 mJ。经过温度匹配的 LBO 晶体倍频,实现了最大脉冲能量为 57.3 mJ 的 780 nm 倍频激光输出,倍频效率为 36.1%。通过 光束质量的测量证实了受激拉曼热效应造成拉曼激 光光束质量退化,从而明显降低倍频效率。为了进 一步提高 780 nm 倍频激光的脉冲能量,需要采用 拉曼介质循环冷却技术。

参考文献

- [1] Spuler S M, Mayor S D. Raman shifter optimized for lidar at a 1.5 μm wavelength [J]. Applied Optics, 2007, 46(15): 2990-2995.
- [2] Mayor S D, Spuler S M. Raman-shifted eye-safe aerosol lidar [J]. Applied Optics, 2004, 43 (19): 3915-3924.
- [3] Eichhorn M. High-efficiency multi-kilowatt Er³⁺:
 YAG solid-state heat-capacity laser [J]. Optics Letters, 2011, 36(7): 1245-1247.

第 49 卷 第 11 期/2022 年 6 月/中国激光

研究论文

- [4] Ter-Gabrielyan N, Merkle L D, Kupp E R, et al. Efficient resonantly pumped tape cast composite ceramic Er : YAG laser at 1645 nm [J]. Optics Letters, 2010, 35(7): 922-924.
- [5] Chu H W, Zhao J, Li T, et al. KTP OPO with signal wave at 1630 nm intracavity pumped by an efficient σ-polarized Nd, MgO: LiNbO₃ laser [J]. Optical Materials Express, 2015, 5(4): 684-689.
- [6] Peng Y F, Wei X B, Xie G, et al. A high-power narrow-linewidth optical parametric oscillator based on PPMgLN [J]. Laser Physics, 2013, 23 (5): 055405.
- [7] Chen Y B, Wang Z F, Li Z X, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm [J]. Optics Express, 2017, 25 (17): 20944-20949.
- [8] 李仲慧,郑天成,蔡向龙,等.1064 nm 激光泵浦 D₂
 产生 1560 nm 拉曼激光[J].现代应用物理,2019, 10(2):020302.

Li Z H, Zheng T C, Cai X L, et al. Conversion efficiency of 1560 nm Raman laser in deuterium gas pumped by 1064 nm pulsed laser [J]. Modern Applied Physics, 2019, 10(2): 020302.

- [9] 崔宇龙,黄威,周智越,等.基于空芯光子晶体光纤的单程高效氘气转动拉曼激光光源[J].光学学报,2020,40(2):0214001.
 Cui Y L, Huang W, Zhou Z Y, et al. Single-pass high-efficiency rotational Raman laser source based on deuterium-filled hollow-core photonic crystal fiber [J]. Acta Optica Sinica, 2020, 40(2):0214001.
- [10] 黄威,李智贤,崔宇龙,等.反共振空芯光纤中氘气
 受激拉曼散射实验研究[J].中国激光,2020,47
 (1):0101001.
 Huang W, Li Z X, Cui Y L, et al. Experimental

research on stimulated Raman scattering of deuterium gas in anti-resonance hollow-core fibers [J]. Chinese Journal of Lasers, 2020, 47(1): 0101001.

- [11] Li H, Huang W, Cui Y L, et al. 3 W tunable 1.65 μm fiber gas Raman laser in D₂-filled hollow-core photonic crystal fibers [J]. Optics & Laser Technology, 2020, 132: 106474.
- [12] Li Y Q, Bai Z X, Chen H, et al. Eye-safe diamond Raman laser [J]. Results in Physics, 2020, 16: 102853.

- [13] Zhang L, Jiang H W, Yang X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser
 [J]. Scientific Reports, 2017, 7: 42611.
- [14] Liu D, Cai X L, Li Z H, et al. The threshold reduction of SRS in deuterium by multi-pass configuration [J]. Optics Communications, 2016, 379: 36-40.
- [15] 曹开法,黄见,胡顺星. H₂、D₂及H₂/D₂混合气体 受激拉曼特性研究[J].光学学报, 2015, 35(3): 0319001.
 Cao K F, Huang J, Hu S X. Investigation of stimulated Raman scattering characteristics in D₂, H₂ and D₂/H₂ mixtures[J]. Acta Optica Sinica, 2015, 35(3): 0319001.
- [16] Li Z H, Liu D, Cai X L, et al. Stimulated Raman scattering in carbon dioxide gas pumped by Nd: YAG laser at 1064 nm [J]. Chinese Journal of Lasers, 2018, 45(3): 0308001.
 李仲慧,刘栋,蔡向龙,等. 1064 nm Nd: YAG 激光 抽运二氧化碳气体中的受激拉曼散射[J]. 中国激光, 2018, 45(3): 0308001.
- [17] 冷静. 气体中的受激拉曼散射研究及其在激光波长转换中的应用[D]. 大连:中国科学院大连化学物理研究所, 2006: 22-26.
 Leng J. Study on stimulated Raman scattering in gas medium and its application in laser wavelength conversion[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2006: 22-26.
- [18] Hanna D, Pointer D, Pratt D. Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane [J]. IEEE Journal of Quantum Electronics, 1986, 22(2): 332-336.
- [19] Shen C C, Cai X L, Su X J, et al. Wavelengthtunable narrow-linewidth gaseous Raman laser [J]. Applied Optics, 2021, 60(18): 5465-5470.
- [20] Reintjes J, Lehmberg R H, Chang R S F, et al. Beam cleanup with stimulated Raman scattering in the intensity-averaging regime [J]. Journal of the Optical Society of America B, 1986, 3(10): 1408-1427.
- [21] Chen Y, Li F Q, Liu K, et al. High-efficiency 2-mJ 5-kHz picosecond green laser generation by Nd: YAG innoslab amplifier [J]. IEEE Photonics Technology Letters, 2015, 27(14): 1531-1534.

High Energy Pulsed Laser in 1.6 µm Waveband Based on Deuterium Gas Stimulated Raman Scattering

Cai Xianglong^{1,2}, Li Zhonghui³, Liu Dong², Wang Pengyuan², Chen Ying², Liu Jinbo², Shi Jing¹, Wang Tingting¹, Cai Hongxing^{1*}, Guo Jingwei^{2**}

¹School of Science, Changchun University of Science and Technology, Changchun 130022, Jilin, China;

 2 Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

Dalian 116023, Liaoning, China;

³ Wuxi Zhongke Optoelectronics Technology Co., Ltd., Wuxi 214115, Jiangsu, China

Abstract

Objective In atmospheric transmission windows, $\sim 1.6 \ \mu m$ is a significant waveband, and lasers with emission wavelengths longer than 1.4 μm are called eye-safe wavebands. Based on the above advantages, lasers of 1.6 μm waveband are used as laser sources for aerosol lidar, laser range finder system, and other applications. The pulse energy (or average power) of the laser is a key parameter in determining the measurement distance of this type of instrument, and the large pulse energy of a 1.6 μm waveband laser is imminently required. Several methods for generating lasers with a 1.6 μm waveband, such as Er:YAG and 1064 nm pumped OPO lasers, are available; each has its advantages and applications. Stimulated Raman scattering (SRS) is a convenient method for generating lasers with new wavelengths. Gaseous Raman lasers have high conversion efficiency, high damage threshold, and high peak power (large pulse energy), among others. In this study, we present a 1.56 μm Raman laser generated by 1064 nm laser-pumped high-pressure deuterium.

Methods A *Q*-swithed Nd: YAG laser of 1064 nm is used as the pump source. The laser beam diameter is 8 mm, the maximum output energy is 900 mJ, the full width at half maximum (FWHM) is approximately 10 ns, and the repetition frequency is 10 Hz. Pressurized deuterium gas is used as a laser Raman active medium. The gas pressure varies 0.5–3.5 MPa. A double focus configuration is used for the SRS experiment. Further, the relationships between the conversion efficiency under different gas pressures, focus numbers, and focus positions are investigated. To study the beam quality of Raman laser, the frequency is doubled to 780 nm.

Results and Discussions A double focus configuration is used for the SRS experiment. Experimental parameters, such as the pressure of deuterium and focus condition are optimized under the assistance of theoretical simulation, and the maximum photon conversion efficiency of the Raman laser is 82.4% (Fig. 6). In this study, the holeburning effect of the Raman gain coefficient is identified and explained. This indicates that a higher pressure of Raman active gas is beneficial for maintaining a high conversion efficiency under the condition of a big pulse energy pump laser. Although a high conversion efficiency can be achieved using double focus configuration, the pulse energy is limited. To increase the pulse energy of the Raman laser, the pressure of the Raman active gas is decreased to 1 MPa, the beam waist size and pump laser energy are increased, and a maximum of 245 mJ Raman laser is achieved, whereas the photon conversion efficiency decreases to 48.8% (Fig. 8). A temperature-matched LBO crystal is used to double the frequency of a 1.56 μ m Raman laser, and a 780 nm laser with a maximum conversion efficiency of 36.6% (Fig. 9) is obtained. By comparing the beam qualities of the pump and 780 nm lasers, it is inferred that the thermal effect of the SRS process caused the limited frequency doubling efficiency.

Conclusions In this study, the highest photon conversion efficiency of the first Stokes laser is 82.4%, which is also the highest conversion efficiency of deuterium gas stimulated Raman scattering pumped by Nd: YAG 1064 nm wavelength in free space. The phenomenon of Raman gain hole-burning is discovered and explained. Appropriately increasing the gas pressure of Raman medium is conducive for inhibiting Raman gain hole-burning, which is useful in maintaining pump laser high conversion efficiency at the stimulated Raman wavelength shifting of large pulse energy laser. To further improve the pulse energy of the Raman laser, we reduce the pressure of the Raman medium and

increase the waist size of the pump laser beam to achieve maximum single pulse energy of 245 mJ. Additionally, we employ LBO crystal to obtain the second-harmonic generation with an output wavelength of 780 nm, maximum energy of 57.3 mJ, and conversion efficiency of 36.1%. The measurement of beam quality confirms that the gas thermal effect degrades the Raman laser beam quality, which reduces the laser energy conversion efficiency of frequency doubling. Raman medium circulating or cooling technology is a method for increasing the pulse energy of the laser.

Key words laser physics; pulsed laser; stimulated Raman scattering (SRS); deuterium gas; conversion efficiency